受鑄(zhu)(zhu)錠(ding)凝固(gu)收縮和鑄(zhu)(zhu)型(xing)(xing)(xing)受熱(re)(re)(re)(re)膨脹的影響,鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型(xing)(xing)(xing)接觸隨(sui)之(zhi)發生變(bian)化,即形(xing)成氣(qi)隙,如下圖(tu)所示(shi)。當鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型(xing)(xing)(xing)間氣(qi)隙形(xing)成以后,鑄(zhu)(zhu)錠(ding)向(xiang)鑄(zhu)(zhu)型(xing)(xing)(xing)的傳(chuan)熱(re)(re)(re)(re)方式不只是簡單的傳(chuan)導(dao)傳(chuan)熱(re)(re)(re)(re),同時存(cun)在小區域的氣(qi)體導(dao)熱(re)(re)(re)(re)和輻(fu)射傳(chuan)熱(re)(re)(re)(re),導(dao)致鑄(zhu)(zhu)錠(ding)-鑄(zhu)(zhu)型(xing)(xing)(xing)界(jie)面(mian)(mian)熱(re)(re)(re)(re)阻(1/hz)發生非線性(xing)變(bian)化。界(jie)面(mian)(mian)熱(re)(re)(re)(re)量傳(chuan)輸可分為如下三個階段。
階段1: 在凝固初期,當表(biao)面(mian)(mian)(mian)溫度(du)略低于(yu)鑄錠液(ye)相線(xian)溫度(du)時,在鑄錠外表(biao)面(mian)(mian)(mian)會形成一(yi)定厚度(du)的(de)(de)半固態殼;此(ci)時,在液(ye)體靜壓(ya)(ya)力(li)和外界(jie)(jie)壓(ya)(ya)力(li)(如(ru)凝固壓(ya)(ya)力(li)和大氣壓(ya)(ya)等)的(de)(de)作(zuo)用(yong)下(xia),鑄錠和鑄型界(jie)(jie)面(mian)(mian)(mian)處于(yu)完全接(jie)觸狀(zhuang)態,如(ru)圖(tu)2-84(a)所(suo)示,因(yin)而界(jie)(jie)面(mian)(mian)(mian)的(de)(de)固固接(jie)觸熱量傳(chuan)輸方式在界(jie)(jie)面(mian)(mian)(mian)傳(chuan)熱過程中(zhong)起主導作(zuo)用(yong), 此(ci)界(jie)(jie)面(mian)(mian)(mian)宏觀(guan)平均換熱系數hz1可表(biao)示為
h21=a+b·(P1+P3) (2-167)
式(shi)中(zhong),a和b為(wei)常(chang)量;Ph為(wei)液體靜(jing)壓力;Ps為(wei)外(wai)界壓力。
階段2: 在(zai)(zai)給定外界(jie)(jie)壓力(li)和(he)液體靜壓力(li)條(tiao)件下,半(ban)(ban)(ban)固(gu)(gu)(gu)態(tai)殼(ke)的強度存在(zai)(zai)一個(ge)臨界(jie)(jie)值(zhi)(zhi)σm;隨著(zhu)凝(ning)固(gu)(gu)(gu)過程的進(jin)行,半(ban)(ban)(ban)固(gu)(gu)(gu)態(tai)殼(ke)的強度不斷增(zeng)大(da)(da);當強度大(da)(da)于(yu)(yu)臨界(jie)(jie)值(zhi)(zhi)時(shi),半(ban)(ban)(ban)固(gu)(gu)(gu)態(tai)殼(ke)定型(xing);隨后鑄(zhu)錠(ding)半(ban)(ban)(ban)固(gu)(gu)(gu)態(tai)殼(ke)逐漸與鑄(zhu)型(xing)分(fen)離(li),固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)觸(chu)積逐漸減小,氣隙(xi)在(zai)(zai)界(jie)(jie)面(mian)某些位(wei)置(zhi)形成且其(qi)尺寸(cun)逐漸增(zeng)大(da)(da),導致鑄(zhu)錠(ding)和(he)鑄(zhu)型(xing)界(jie)(jie)面(mian)處于(yu)(yu)半(ban)(ban)(ban)完全接(jie)觸(chu)狀態(tai),如圖2-84(b)所示。在(zai)(zai)此階段,氣隙(xi)的尺寸(cun)主(zhu)(zhu)要(yao)受由(you)液相(xiang)變固(gu)(gu)(gu)相(xiang)發生的凝(ning)固(gu)(gu)(gu)收縮影(ying)響。盡管界(jie)(jie)面(mian)還存在(zai)(zai)部(bu)分(fen)固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)觸(chu),但界(jie)(jie)面(mian)熱(re)(re)(re)(re)阻隨著(zhu)凝(ning)固(gu)(gu)(gu)的進(jin)行不斷增(zeng)大(da)(da),由(you)于(yu)(yu)鑄(zhu)錠(ding)和(he)鑄(zhu)型(xing)界(jie)(jie)面(mian)接(jie)觸(chu)方式的變化,界(jie)(jie)面(mian)熱(re)(re)(re)(re)量傳(chuan)輸主(zhu)(zhu)要(yao)由(you)固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)觸(chu)傳(chuan)熱(re)(re)(re)(re)、輻射換熱(re)(re)(re)(re)以(yi)及(ji)氣相(xiang)導熱(re)(re)(re)(re)傳(chuan)熱(re)(re)(re)(re)三分(fen)構成,其(qi)中,固(gu)(gu)(gu)固(gu)(gu)(gu)接(jie)觸(chu)傳(chuan)熱(re)(re)(re)(re)仍然占據界(jie)(jie)面(mian)熱(re)(re)(re)(re)量傳(chuan)輸的主(zhu)(zhu)導地(di)位(wei)。此階段界(jie)(jie)面(mian)宏觀平均換熱(re)(re)(re)(re)系(xi)數(shu)hz2可表示為
此外,隨著凝固(gu)(gu)的進(jin)行(xing),鑄(zhu)錠和(he)鑄(zhu)型界(jie)面上(shang)固(gu)(gu)固(gu)(gu)接(jie)觸(chu)(chu)面積逐(zhu)(zhu)漸減(jian)小,因而階段1界(jie)面宏(hong)觀平(ping)均(jun)換(huan)(huan)(huan)熱系(xi)(xi)(xi)數hz1最(zui)大,階段2界(jie)面宏(hong)觀平(ping)均(jun)換(huan)(huan)(huan)熱系(xi)(xi)(xi)數hz2值(zhi)次(ci)之,階段3界(jie)面宏(hong)觀平(ping)均(jun)換(huan)(huan)(huan)熱系(xi)(xi)(xi)數hz3值(zhi)最(zui)小,這(zhe)與實際凝固(gu)(gu)過(guo)程中界(jie)面換(huan)(huan)(huan)熱系(xi)(xi)(xi)數逐(zhu)(zhu)漸減(jian)小的規律相(xiang)互印證。同(tong)時,在鑄(zhu)錠自身重力的作用下,在鑄(zhu)錠底部(bu)位(wei)置,界(jie)面半完(wan)全接(jie)觸(chu)(chu)狀態(tai)始終(zhong)貫(guan)穿整個凝固(gu)(gu)過(guo)程,這(zhe)與鑄(zhu)錠頂端界(jie)面固(gu)(gu)固(gu)(gu)接(jie)觸(chu)(chu)完(wan)全消失有所(suo)不同(tong),如圖2-84(d)所(suo)示。
凝固壓力在氣隙的(de)形(xing)成過程(cheng)中(zhong)扮演了十(shi)分重要的(de)角色(se)。研究表明(ming),增加凝固壓力(兆帕級)具有明(ming)顯的(de)強(qiang)化冷卻(que)(que)效果,但在界面(mian)熱量傳輸(shu)變化的(de)三個階段,加壓強(qiang)化冷卻(que)(que)的(de)程(cheng)度大有不同(tong)。
階段1:當壓力(li)在(zai)幾兆帕下變化(hua)時,由于物(wu)性參(can)數(shu)(如強度、密(mi)度和(he)導熱系數(shu)等)的(de)(de)變化(hua)量可以忽略不計,壓力(li)對鑄錠和(he)鑄型(xing)界(jie)(jie)面完全接觸狀態影(ying)響(xiang)較小,根據式(2-166)可知(zhi),壓力(li)對界(jie)(jie)面宏觀平均換熱系數(shu)的(de)(de)影(ying)響(xiang)可以忽略不計,因此增加壓力(li)對階段1的(de)(de)界(jie)(jie)面換熱影(ying)響(xiang)很小。
階段2:在此階段,鑄錠和鑄型(xing)界面非(fei)完全接觸(chu)狀(zhuang)態(tai)主(zhu)要由凝固收縮控(kong)制。
隨著(zhu)壓力(li)(li)的(de)(de)增加(jia),半(ban)固態(tai)殼抵抗變形(xing)(xing)所需臨界(jie)(jie)(jie)(jie)強度增大(da),因而(er)加(jia)壓能夠抑制界(jie)(jie)(jie)(jie)面(mian)(mian)非完(wan)全(quan)接(jie)觸狀(zhuang)態(tai)的(de)(de)形(xing)(xing)成,有(you)助于(yu)將界(jie)(jie)(jie)(jie)面(mian)(mian)在整個凝(ning)固過程中(zhong)實現保持固固接(jie)觸的(de)(de)狀(zhuang)態(tai)。例(li)如,隨著(zhu)壓力(li)(li)的(de)(de)增加(jia),H13表(biao)面(mian)(mian)上的(de)(de)坑(keng)變得淺平(ping),且數(shu)量逐漸(jian)減少,意味(wei)著(zhu)鑄錠表(biao)面(mian)(mian)越來越光滑,粗(cu)糙(cao)度減小,鑄錠鑄型(xing)界(jie)(jie)(jie)(jie)面(mian)(mian)處(chu)的(de)(de)固固接(jie)觸面(mian)(mian)積增大(da)。根據式(shi)(2-168)可知(zhi),界(jie)(jie)(jie)(jie)面(mian)(mian)宏觀(guan)平(ping)均傳熱系數(shu)與(yu)壓力(li)(li)趨于(yu)正比(bi)關系,加(jia)壓能夠顯(xian)著(zhu)提(ti)升此(ci)階(jie)段界(jie)(jie)(jie)(jie)面(mian)(mian)宏觀(guan)平(ping)均換熱系數(shu)。因此(ci),增加(jia)壓力(li)(li)能夠強化鑄錠鑄型(xing)間(jian)界(jie)(jie)(jie)(jie)面(mian)(mian)固固接(jie)觸狀(zhuang)態(tai),抑制由凝(ning)固收縮導致界(jie)(jie)(jie)(jie)面(mian)(mian)氣隙的(de)(de)形(xing)(xing)成,加(jia)快鑄錠鑄型(xing)界(jie)(jie)(jie)(jie)面(mian)(mian)傳遞(di),強化冷卻效果明顯(xian)。
階(jie)段(duan)3:界(jie)(jie)面(mian)(mian)氣(qi)隙(xi)(xi)的(de)長大主要受控于(yu)固態(tai)收縮。隨(sui)著界(jie)(jie)面(mian)(mian)氣(qi)隙(xi)(xi)尺寸的(de)變大,外界(jie)(jie)逐(zhu)步與(yu)界(jie)(jie)面(mian)(mian)氣(qi)隙(xi)(xi)連通,在壓力的(de)作用下(xia),氣(qi)體(ti)(ti)逐(zhu)漸進(jin)(jin)入界(jie)(jie)面(mian)(mian)氣(qi)隙(xi)(xi)內,進(jin)(jin)而導(dao)致界(jie)(jie)面(mian)(mian)氣(qi)隙(xi)(xi)與(yu)外界(jie)(jie)之間(jian)的(de)壓差趨于(yu)零,壓力對界(jie)(jie)面(mian)(mian)氣(qi)隙(xi)(xi)的(de)影響逐(zhu)漸消失。此階(jie)段(duan),氣(qi)體(ti)(ti)導(dao)熱換熱與(yu)輻射(she)換熱為界(jie)(jie)面(mian)(mian)換熱的(de)主要方式。其中氣(qi)體(ti)(ti)導(dao)熱換熱系(xi)數(hc,g)主要由氣(qi)隙(xi)(xi)內氣(qi)體(ti)(ti)導(dao)熱系(xi)數(kgap)和界(jie)(jie)面(mian)(mian)氣(qi)隙(xi)(xi)尺寸(wgap)決定(ding),作為計算(suan)(suan)氣(qi)體(ti)(ti)導(dao)熱換熱系(xi)數的(de)重要參數,在給(gei)定(ding)壓力下(xia)氣(qi)體(ti)(ti)導(dao)熱系(xi)數(kgap)可(ke)由下(xia)列公(gong)式進(jin)(jin)行計算(suan)(suan):
綜上所(suo)述,在(zai)通(tong)過(guo)(guo)氣(qi)體(ti)維持壓(ya)力(li)的(de)加(jia)壓(ya)條件下,壓(ya)力(li)對(dui)界(jie)面換熱(re)系(xi)數(shu)的(de)影響主要集中在(zai)界(jie)面氣(qi)隙形(xing)成的(de)第二(er)階(jie)段,即在(zai)鑄(zhu)錠殼凝固收縮階(jie)段加(jia)壓(ya)通(tong)過(guo)(guo)增大(da)鑄(zhu)錠殼抵抗變形(xing)所(suo)需(xu)臨界(jie)強度從而改善界(jie)面換熱(re),起到(dao)強化冷(leng)卻的(de)作用。
以(yi)(yi)H13在0.1MPa、1MPa和(he)2MPa壓(ya)力(li)下凝(ning)固(gu)為(wei)例,其(qi)(qi)凝(ning)固(gu)壓(ya)力(li)通過(guo)充(chong)入氬氣(qi)獲得。為(wei)了分(fen)析加壓(ya)對界面氣(qi)隙尺寸和(he)換熱(re)(re)方式的影響規律,采用埋設(she)熱(re)(re)電(dian)偶以(yi)(yi)及位(wei)(wei)(wei)移(yi)(yi)傳感(gan)器(qi)實驗,同時(shi)測量凝(ning)固(gu)過(guo)程中鑄錠(ding)(ding)和(he)鑄型(xing)(xing)溫(wen)(wen)度變化(hua)(hua)(hua)曲(qu)(qu)線(xian)(xian)以(yi)(yi)及其(qi)(qi)位(wei)(wei)(wei)移(yi)(yi)變化(hua)(hua)(hua)曲(qu)(qu)線(xian)(xian),其(qi)(qi)中,1#和(he)2#熱(re)(re)電(dian)偶分(fen)別(bie)測量離鑄錠(ding)(ding)外表面10mm和(he)15mm位(wei)(wei)(wei)置(zhi)處鑄錠(ding)(ding)溫(wen)(wen)度變化(hua)(hua)(hua)曲(qu)(qu)線(xian)(xian);3#和(he)4#熱(re)(re)電(dian)偶分(fen)別(bie)測量鑄型(xing)(xing)內表面5mm和(he)10mm位(wei)(wei)(wei)置(zhi)處鑄型(xing)(xing)的溫(wen)(wen)度變化(hua)(hua)(hua)曲(qu)(qu)線(xian)(xian);位(wei)(wei)(wei)移(yi)(yi)傳感(gan)器(qi)LVDT1和(he)LVDT2的探頭位(wei)(wei)(wei)置(zhi)離鑄型(xing)(xing)內表面徑向距離均為(wei)5mm,分(fen)別(bie)插入鑄錠(ding)(ding)和(he)鑄型(xing)(xing)中測量凝(ning)固(gu)過(guo)程中其(qi)(qi)位(wei)(wei)(wei)移(yi)(yi)變化(hua)(hua)(hua)曲(qu)(qu)線(xian)(xian)。測量溫(wen)(wen)度和(he)位(wei)(wei)(wei)移(yi)(yi)變化(hua)(hua)(hua)曲(qu)(qu)線(xian)(xian)的裝置(zhi)如圖2-85所(suo)示。
溫度(du)測(ce)量(liang)曲線如圖2-86所示(shi),對于鑄(zhu)錠溫度(du)測(ce)量(liang)曲線,存在“陡(dou)升”和“振(zhen)蕩”區域,這主要由(you)熱(re)電偶預熱(re)和澆注引起鋼液湍流分別造成。隨著凝固過(guo)程的進(jin)行,鑄(zhu)型(xing)溫度(du)升高,鑄(zhu)錠溫度(du)不斷降低。
因鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)(nei)表面(mian)(mian)和鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)(wai)表面(mian)(mian)溫(wen)(wen)度(du)幾乎難以通過實(shi)驗進(jin)行準確測量,因而(er)(er)可通過數值計算(suan)的方式獲得,即(ji)以測量的鑄(zhu)(zhu)(zhu)錠(ding)(ding)和鑄(zhu)(zhu)(zhu)型(xing)(xing)溫(wen)(wen)度(du)變化曲線作為輸入量,采用Beck 非(fei)(fei)線性求(qiu)解法(fa),計算(suan)鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)(nei)表面(mian)(mian)(Tw,i)和鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)(wai)表面(mian)(mian)溫(wen)(wen)度(du)(Twm),由于鑄(zhu)(zhu)(zhu)錠(ding)(ding)和鑄(zhu)(zhu)(zhu)型(xing)(xing)表面(mian)(mian)非(fei)(fei)鏡面(mian)(mian),有一定粗糙度(du),因而(er)(er)計算(suan)所(suo)得鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)(nei)表面(mian)(mian)(Tw,i)和鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)(wai)表面(mian)(mian)溫(wen)(wen)度(du)(Tw,m)均(jun)為宏觀(guan)平均(jun)表面(mian)(mian)溫(wen)(wen)度(du),計算(suan)結果如圖2-87所(suo)示。當(dang)壓(ya)力(li)一定時,在鑄(zhu)(zhu)(zhu)錠(ding)(ding)鑄(zhu)(zhu)(zhu)型(xing)(xing)界面(mian)(mian)換(huan)熱(re)以及鑄(zhu)(zhu)(zhu)型(xing)(xing)外(wai)(wai)表面(mian)(mian)散熱(re)的影響(xiang)下(xia),鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)(wai)表面(mian)(mian)溫(wen)(wen)度(du)(Tw,i)在整個凝固過程中持續降(jiang)低,鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)(nei)表面(mian)(mian)(Tw,m)先增(zeng)加(jia)而(er)(er)后逐漸降(jiang)低。隨著壓(ya)力(li)從0.1MPa增(zeng)加(jia)至(zhi)2MPa,鑄(zhu)(zhu)(zhu)錠(ding)(ding)外(wai)(wai)表面(mian)(mian)降(jiang)溫(wen)(wen)速(su)率和鑄(zhu)(zhu)(zhu)型(xing)(xing)內(nei)(nei)表面(mian)(mian)升溫(wen)(wen)速(su)率明(ming)顯加(jia)快,表明(ming)加(jia)壓(ya)對鑄(zhu)(zhu)(zhu)錠(ding)(ding)和鑄(zhu)(zhu)(zhu)型(xing)(xing)界面(mian)(mian)間換(huan)熱(re)速(su)率影響(xiang)顯著。
當壓力一定時(shi)(shi)(shi),界(jie)面(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬(kuan)度(du)隨時(shi)(shi)(shi)間的(de)(de)變(bian)化(hua)關(guan)系(xi)可(ke)通過凝(ning)(ning)(ning)固(gu)(gu)(gu)過程(cheng)(cheng)中(zhong)鑄(zhu)(zhu)錠和鑄(zhu)(zhu)型(xing)(xing)位移(yi)(yi)變(bian)化(hua)曲線獲得(de)。基于(yu)位移(yi)(yi)傳感器(qi)的(de)(de)位移(yi)(yi)測量結果,所(suo)得(de)界(jie)面(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬(kuan)度(du)隨時(shi)(shi)(shi)間的(de)(de)變(bian)化(hua)關(guan)系(xi)如(ru)圖2-88(a)所(suo)示,在(zai)0.1MPa、1MPa和2MPa下(xia),界(jie)面(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬(kuan)度(du)隨時(shi)(shi)(shi)間變(bian)化(hua)規(gui)律基本相(xiang)似。以(yi)(yi)2MPa為例,在(zai)凝(ning)(ning)(ning)固(gu)(gu)(gu)初期(qi),鑄(zhu)(zhu)錠、鑄(zhu)(zhu)型(xing)(xing)和位移(yi)(yi)傳感器(qi)之(zhi)間存在(zai)巨大(da)溫(wen)(wen)差,使得(de)位移(yi)(yi)傳感器(qi)附近(jin)的(de)(de)鋼液迅速凝(ning)(ning)(ning)固(gu)(gu)(gu),以(yi)(yi)至于(yu)無法測量階段2 中(zhong)凝(ning)(ning)(ning)固(gu)(gu)(gu)收(shou)(shou)縮(suo)(suo)導致的(de)(de)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬(kuan)度(du);同(tong)時(shi)(shi)(shi),鑄(zhu)(zhu)錠和鑄(zhu)(zhu)型(xing)(xing)初期(qi)溫(wen)(wen)差巨大(da),加速了鑄(zhu)(zhu)型(xing)(xing)升溫(wen)(wen)膨(peng)脹和鑄(zhu)(zhu)錠冷卻(que)收(shou)(shou)縮(suo)(suo),因(yin)而(er)在(zai)界(jie)面(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺(chi)寸(cun)隨時(shi)(shi)(shi)間變(bian)化(hua)曲線前段不(bu)存氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺(chi)寸(cun)緩(huan)慢(man)增長部(bu)(bu)分,取而(er)代(dai)之(zhi)的(de)(de)是氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬(kuan)度(du)隨時(shi)(shi)(shi)間的(de)(de)陡(dou)(dou)升,而(er)且(qie)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)寬(kuan)度(du)的(de)(de)陡(dou)(dou)升很大(da)程(cheng)(cheng)度(du)由鑄(zhu)(zhu)錠固(gu)(gu)(gu)態收(shou)(shou)縮(suo)(suo)所(suo)致。因(yin)此,位移(yi)(yi)傳感器(qi)所(suo)測氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺(chi)寸(cun)僅包含了固(gu)(gu)(gu)態收(shou)(shou)縮(suo)(suo)導致氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)形成部(bu)(bu)分,無因(yin)凝(ning)(ning)(ning)固(gu)(gu)(gu)收(shou)(shou)縮(suo)(suo)形成氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)部(bu)(bu)分。在(zai)低壓下(xia),增加壓力對(dui)鑄(zhu)(zhu)型(xing)(xing)和鑄(zhu)(zhu)錠的(de)(de)密度(du)影(ying)響很小,幾乎(hu)可(ke)以(yi)(yi)忽略(lve)不(bu)計(ji),所(suo)以(yi)(yi)增加壓力對(dui)鑄(zhu)(zhu)型(xing)(xing)固(gu)(gu)(gu)態收(shou)(shou)縮(suo)(suo)導致氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)的(de)(de)尺(chi)寸(cun)影(ying)響非常小,所(suo)以(yi)(yi)在(zai)0.1MPa、1MPa和2MPa下(xia),界(jie)面(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)(xi)尺(chi)寸(cun)傳感器(qi)量的(de)(de)最(zui)大(da)值幾乎(hu)相(xiang)同(tong),約為1.27mm。
根(gen)據(ju)氬(ya)氣(qi)(qi)(qi)導熱系(xi)(xi)數(shu)(shu)(shu)(shu)隨壓力的(de)變(bian)化情況(kuang)[圖(tu)2-89(a)]、凝(ning)固(gu)過程中(zhong)界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)測量曲線和(he)(he)鑄錠(ding)外表面(mian)(mian)以及(ji)(ji)鑄型內表溫度的(de)變(bian)化曲線,利用式(shi)(2-171)和(he)(he)式(shi)(2-172)可(ke)獲得氣(qi)(qi)(qi)隙(xi)(xi)(xi)形成階段(duan)3中(zhong)界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)體(ti)導熱換(huan)(huan)(huan)(huan)(huan)熱系(xi)(xi)數(shu)(shu)(shu)(shu)hc,g和(he)(he)輻(fu)射(she)(she)換(huan)(huan)(huan)(huan)(huan)熱系(xi)(xi)數(shu)(shu)(shu)(shu)hr,以及(ji)(ji)換(huan)(huan)(huan)(huan)(huan)熱方式(shi)比(bi)(bi)例關系(xi)(xi),結果如(ru)圖(tu)2-89(b)所示(shi)。輻(fu)射(she)(she)換(huan)(huan)(huan)(huan)(huan)熱系(xi)(xi)數(shu)(shu)(shu)(shu)不(bu)受界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺(chi)(chi)(chi)寸(cun)的(de)影(ying)響(xiang),在(zai)(zai)整(zheng)個凝(ning)固(gu)過程中(zhong),基(ji)本(ben)保持不(bu)變(bian);相比(bi)(bi)之(zhi)下(xia),氣(qi)(qi)(qi)體(ti)導熱換(huan)(huan)(huan)(huan)(huan)熱系(xi)(xi)數(shu)(shu)(shu)(shu)主要由(you)(you)氣(qi)(qi)(qi)體(ti)導熱系(xi)(xi)數(shu)(shu)(shu)(shu)和(he)(he)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺(chi)(chi)(chi)寸(cun)共同決定,與(yu)氣(qi)(qi)(qi)體(ti)導熱系(xi)(xi)數(shu)(shu)(shu)(shu)成正比(bi)(bi),與(yu)界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺(chi)(chi)(chi)寸(cun)成反比(bi)(bi),因而(er)在(zai)(zai)凝(ning)固(gu)過程中(zhong)氣(qi)(qi)(qi)體(ti)導熱換(huan)(huan)(huan)(huan)(huan)熱系(xi)(xi)數(shu)(shu)(shu)(shu)變(bian)化規律與(yu)界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)尺(chi)(chi)(chi)寸(cun)的(de)變(bian)化過程截(jie)然相反,呈現先迅速減(jian)小,然后趨于定值(zhi)。在(zai)(zai)各個壓力條件下(xia),隨著凝(ning)固(gu)的(de)進行(xing),界(jie)(jie)面(mian)(mian)總換(huan)(huan)(huan)(huan)(huan)熱系(xi)(xi)數(shu)(shu)(shu)(shu)(hc,g+h,)迅速減(jian)小,然后趨于穩定,其(qi)中(zhong)輻(fu)射(she)(she)換(huan)(huan)(huan)(huan)(huan)熱系(xi)(xi)數(shu)(shu)(shu)(shu)h1在(zai)(zai)總換(huan)(huan)(huan)(huan)(huan)熱系(xi)(xi)數(shu)(shu)(shu)(shu)中(zhong)的(de)占比(bi)(bi)為60%~80%[120],且(qie)在(zai)(zai)凝(ning)固(gu)中(zhong)后期,0.1MPa、1MPa和(he)(he)2MPa壓力下(xia),總界(jie)(jie)面(mian)(mian)換(huan)(huan)(huan)(huan)(huan)熱系(xi)(xi)數(shu)(shu)(shu)(shu)基(ji)本(ben)相等。由(you)(you)此可(ke)知,低壓下(xia),加壓對(dui)由(you)(you)固(gu)態收縮(suo)形成界(jie)(jie)面(mian)(mian)氣(qi)(qi)(qi)隙(xi)(xi)(xi)的(de)尺(chi)(chi)(chi)寸(cun)影(ying)響(xiang)幾乎(hu)可(ke)以忽略不(bu)計。
根據以上討(tao)論(lun)可知,凝固結(jie)束后,界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)換(huan)熱(re)主要(yao)通過(guo)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)換(huan)熱(re)和輻射換(huan)熱(re)兩種方(fang)式進行,因加壓(ya)(ya)對輻射換(huan)熱(re)系(xi)(xi)數(shu)(shu)的(de)(de)影(ying)響(xiang)(xiang)很(hen)小,那(nei)么加壓(ya)(ya)主要(yao)通過(guo)改變(bian)界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)換(huan)熱(re)系(xi)(xi)數(shu)(shu),從而(er)起到強化(hua)冷卻(que)的(de)(de)效(xiao)果。同時,界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)換(huan)熱(re)系(xi)(xi)數(shu)(shu)主要(yao)由氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)系(xi)(xi)數(shu)(shu)和界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)尺寸(cun)決定,因壓(ya)(ya)力從0.1MPa增加至2MPa,氬氣(qi)(qi)導(dao)(dao)熱(re)系(xi)(xi)數(shu)(shu)變(bian)化(hua)很(hen)小,進一(yi)步(bu)可知壓(ya)(ya)力主要(yao)通過(guo)改變(bian)界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)宏觀平(ping)均尺寸(cun)影(ying)響(xiang)(xiang)界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)體(ti)(ti)導(dao)(dao)熱(re)換(huan)熱(re)系(xi)(xi)數(shu)(shu),進而(er)改變(bian)界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)總換(huan)熱(re)系(xi)(xi)數(shu)(shu)。此外,壓(ya)(ya)力對固態收縮(suo)(suo)導(dao)(dao)致(zhi)的(de)(de)界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)尺寸(cun)影(ying)響(xiang)(xiang)幾乎可以忽略不計(ji)(ji),那(nei)么壓(ya)(ya)力主要(yao)通過(guo)改變(bian)由凝固收縮(suo)(suo)導(dao)(dao)致(zhi)界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)的(de)(de)尺寸(cun),從而(er)影(ying)響(xiang)(xiang)界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)換(huan)熱(re)。為了(le)評估壓(ya)(ya)力對凝固收縮(suo)(suo)導(dao)(dao)致(zhi)界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)形成的(de)(de)影(ying)響(xiang)(xiang),利用界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)換(huan)熱(re)系(xi)(xi)數(shu)(shu)對界(jie)(jie)(jie)(jie)面(mian)(mian)(mian)(mian)氣(qi)(qi)隙(xi)(xi)宏觀平(ping)均尺寸(cun)(wm)進行計(ji)(ji)算,計(ji)(ji)算公式如下:
式中,hz3為宏觀(guan)界(jie)面換熱系數(shu),通過將(jiang)測溫數(shu)據(ju)作為輸入量,利用Beck 非線性(xing)求解法獲得,計(ji)算(suan)流程如(ru)圖2-78所示。在(zai)整個凝固(gu)(gu)(gu)過程中,界(jie)面氣隙宏觀(guan)平均(jun)尺寸(wm)明(ming)顯(xian)小于因固(gu)(gu)(gu)態(tai)收(shou)縮導致的(de)界(jie)面氣隙尺寸(wgap),同時,兩者(zhe)差值(wgap-wm)隨著壓(ya)(ya)力(li)的(de)增加(jia)而增大(圖2-90).這(zhe)表明(ming)在(zai)鑄錠和(he)鑄型間存在(zai)一定的(de)固(gu)(gu)(gu)-固(gu)(gu)(gu)接觸區或微間隙區。這(zhe)些區域的(de)面積(ji)隨著壓(ya)(ya)力(li)的(de)增大而增大,從(cong)而導致傳導換熱的(de)增加(jia),這(zhe)與鑄錠表面粗糙度的(de)實驗(yan)結果(guo)符合,也進一步(bu)說明(ming)了加(jia)壓(ya)(ya)對界(jie)面氣隙尺寸的(de)影響主(zhu)要集中在(zai)凝固(gu)(gu)(gu)收(shou)縮階段。
因此,加壓(ya)主(zhu)要通過抑制由凝固(gu)收(shou)(shou)縮(suo)導致的(de)氣(qi)(qi)隙形成,增(zeng)大固(gu)固(gu)接(jie)(jie)觸(chu)或(huo)微氣(qi)(qi)隙的(de)界面面積,強化鑄(zhu)(zhu)錠(ding)和鑄(zhu)(zhu)型(xing)界面完全接(jie)(jie)觸(chu)狀(zhuang)態,從而增(zeng)加界面氣(qi)(qi)體導熱換熱系數;此外(wai),加壓(ya)下,界面換熱系數的(de)增(zeng)加,加快(kuai)了(le)鑄(zhu)(zhu)錠(ding)固(gu)態收(shou)(shou)縮(suo),導致凝固(gu)初期由固(gu)態收(shou)(shou)縮(suo)引起的(de)氣(qi)(qi)隙的(de)尺寸快(kuai)速增(zeng)大。