一、氮氣孔的形成機理(li)
在(zai)(zai)21.5Cr5Mn1.5Ni0.25N含氮(dan)(dan)(dan)(dan)雙(shuang)相(xiang)(xiang)(xiang)鋼凝(ning)固(gu)(gu)過(guo)程中(zhong),氮(dan)(dan)(dan)(dan)氣(qi)孔形(xing)成和(he)(he)凝(ning)固(gu)(gu)前(qian)沿處[%N]1iq隨距離變化的(de)(de)(de)(de)(de)(de)規(gui)律(lv)如圖2-55所(suo)示。由于糊狀(zhuang)區內大(da)量枝晶(jing)網狀(zhuang)結構的(de)(de)(de)(de)(de)(de)形(xing)成,液(ye)(ye)相(xiang)(xiang)(xiang)的(de)(de)(de)(de)(de)(de)對(dui)流只(zhi)存在(zai)(zai)于一次(ci)枝晶(jing)尖端位置附近(jin)。且枝晶(jing)間幾乎無液(ye)(ye)相(xiang)(xiang)(xiang)的(de)(de)(de)(de)(de)(de)流動。因此(ci),枝晶(jing)間殘(can)(can)(can)(can)余(yu)(yu)液(ye)(ye)相(xiang)(xiang)(xiang)中(zhong)的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)傳質(zhi)(zhi)主(zhu)要依(yi)靠氮(dan)(dan)(dan)(dan)的(de)(de)(de)(de)(de)(de)擴散行為,且糊狀(zhuang)區內氮(dan)(dan)(dan)(dan)傳質(zhi)(zhi)速(su)率非(fei)常小。初始相(xiang)(xiang)(xiang)貧(pin)(pin)氮(dan)(dan)(dan)(dan)鐵(tie)(tie)素體相(xiang)(xiang)(xiang)8的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)溶解度(du)和(he)(he)糊狀(zhuang)區的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)傳質(zhi)(zhi)速(su)率較低(di),導致在(zai)(zai)貧(pin)(pin)氮(dan)(dan)(dan)(dan)鐵(tie)(tie)素體相(xiang)(xiang)(xiang)枝晶(jing)附近(jin)的(de)(de)(de)(de)(de)(de)液(ye)(ye)相(xiang)(xiang)(xiang)中(zhong)出現氮(dan)(dan)(dan)(dan)富(fu)集(ji),且[%N]iq迅速(su)增(zeng)大(da),如圖2-55(a)所(suo)示。根據Yang和(he)(he) Leel70]、Svyazhin 等、Ridolfi 和(he)(he) Tassal的(de)(de)(de)(de)(de)(de)報道可知,當[%N]iq的(de)(de)(de)(de)(de)(de)最大(da)值超過(guo)氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao)(pao)形(xing)成的(de)(de)(de)(de)(de)(de)臨界(jie)氮(dan)(dan)(dan)(dan)質(zhi)(zhi)量分數([%N]pore)時(shi),該區域有氣(qi)泡(pao)(pao)(pao)(pao)形(xing)成的(de)(de)(de)(de)(de)(de)可能性,如圖2-55(b)所(suo)示。在(zai)(zai)后(hou)續的(de)(de)(de)(de)(de)(de)凝(ning)固(gu)(gu)過(guo)程中(zhong),隨著(zhu)包晶(jing)反(fan)應(ying)的(de)(de)(de)(de)(de)(de)進(jin)行,富(fu)氮(dan)(dan)(dan)(dan)奧氏體相(xiang)(xiang)(xiang)γ以異質(zhi)(zhi)形(xing)核(he)的(de)(de)(de)(de)(de)(de)方式(shi)在(zai)(zai)鐵(tie)(tie)素體相(xiang)(xiang)(xiang)8枝晶(jing)的(de)(de)(de)(de)(de)(de)表面(mian)(mian)開始形(xing)核(he)長(chang)大(da),逐漸包裹鐵(tie)(tie)素體相(xiang)(xiang)(xiang)枝晶(jing)表面(mian)(mian),并開始捕獲殘(can)(can)(can)(can)余(yu)(yu)液(ye)(ye)相(xiang)(xiang)(xiang)中(zhong)的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao)(pao),對(dui)比(bi)(bi)圖2-51和(he)(he)圖2-56可知,此(ci)時(shi)枝晶(jing)間殘(can)(can)(can)(can)余(yu)(yu)[%N]1ig的(de)(de)(de)(de)(de)(de)增(zeng)長(chang)速(su)率減(jian)小。對(dui)平衡凝(ning)固(gu)(gu)而(er)言,殘(can)(can)(can)(can)余(yu)(yu)液(ye)(ye)相(xiang)(xiang)(xiang)中(zhong)氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao)(pao)形(xing)成以后(hou),氮(dan)(dan)(dan)(dan)的(de)(de)(de)(de)(de)(de)富(fu)集(ji)程度(du)減(jian)弱,[%N]1iq增(zeng)長(chang)速(su)率的(de)(de)(de)(de)(de)(de)減(jian)小程度(du)明顯;相(xiang)(xiang)(xiang)比(bi)(bi)之(zhi)下,Scheil凝(ning)固(gu)(gu)過(guo)程中(zhong),氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao)(pao)形(xing)成以后(hou),殘(can)(can)(can)(can)余(yu)(yu)液(ye)(ye)相(xiang)(xiang)(xiang)中(zhong)氮(dan)(dan)(dan)(dan)富(fu)集(ji)狀(zhuang)態有所(suo)緩解,但幅度(du)很小。隨著(zhu)凝(ning)固(gu)(gu)界(jie)面(mian)(mian)的(de)(de)(de)(de)(de)(de)進(jin)一步推移,被捕獲的(de)(de)(de)(de)(de)(de)氮(dan)(dan)(dan)(dan)氣(qi)泡(pao)(pao)(pao)(pao)在(zai)(zai)奧氏體相(xiang)(xiang)(xiang)表面(mian)(mian)開始長(chang)大(da),并沿凝(ning)固(gu)(gu)方向(xiang)拉長(chang),如圖2-55(c)所(suo)示。
氮氣(qi)孔(kong)沿(yan)徑(jing)向生長(chang),生長(chang)方向與(yu)凝固方向一致,那(nei)么氮氣(qi)孔(kong)初(chu)始形成(cheng)位(wei)置靠近鑄錠邊部,且氮氣(qi)泡初(chu)始位(wei)置邊緣全(quan)由奧(ao)氏體相γ構成(cheng)(圖(tu)2-57中(zhong)I區),與(yu)圖(tu)2-55描述相符。隨(sui)著(zhu)氮氣(qi)孔(kong)被(bei)拉長(chang),鐵素體相和奧(ao)氏體相以(yi)體積(ji)分數比(bi)約為0.92的(de)關系交替(ti)在氮氣(qi)泡周圍形成(cheng),直到氮氣(qi)孔(kong)閉合。凝固結(jie)束后,氮氣(qi)孔(kong)的(de)宏(hong)觀(guan)形貌(mao)類似于橢圓形,與(yu)Wei等的(de)研(yan)究結(jie)果一致
二、氮(dan)微觀偏析(xi)對(dui)氮(dan)氣孔的影響
氮(dan)(dan)(dan)的(de)(de)(de)(de)(de)分(fen)配系(xi)數(shu)較小,導致(zhi)液(ye)相(xiang)(xiang)(xiang)向固相(xiang)(xiang)(xiang)轉(zhuan)(zhuan)變的(de)(de)(de)(de)(de)過(guo)(guo)程(cheng)中(zhong)(zhong)(zhong)(zhong),固相(xiang)(xiang)(xiang)會將多(duo)(duo)余(yu)(yu)(yu)的(de)(de)(de)(de)(de)氮(dan)(dan)(dan)轉(zhuan)(zhuan)移到殘(can)余(yu)(yu)(yu)液(ye)相(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)(zhong),形(xing)(xing)(xing)成氮(dan)(dan)(dan)偏析。在(zai)氮(dan)(dan)(dan)偏析程(cheng)度逐漸加重(zhong)的(de)(de)(de)(de)(de)過(guo)(guo)程(cheng)中(zhong)(zhong)(zhong)(zhong),當殘(can)余(yu)(yu)(yu)液(ye)相(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)(dan)質量分(fen)數(shu)超過(guo)(guo)其飽和度時,極易(yi)形(xing)(xing)(xing)成氮(dan)(dan)(dan)氣(qi)(qi)泡。隨著(zhu)凝(ning)固的(de)(de)(de)(de)(de)進行,若氣(qi)(qi)泡無法上浮而被捕獲(huo),凝(ning)固結(jie)束后就會在(zai)鑄(zhu)錠內(nei)部形(xing)(xing)(xing)成氣(qi)(qi)孔(kong)。因此,凝(ning)固過(guo)(guo)程(cheng)中(zhong)(zhong)(zhong)(zhong)氮(dan)(dan)(dan)偏析和溶(rong)解度對鑄(zhu)錠中(zhong)(zhong)(zhong)(zhong)最終(zhong)氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)的(de)(de)(de)(de)(de)形(xing)(xing)(xing)成有至關重(zhong)要的(de)(de)(de)(de)(de)作用。氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)多(duo)(duo)數(shu)情況下與疏松(song)縮(suo)孔(kong)共存,內(nei)壁凹凸不平呈現裂紋狀(zhuang),且整(zheng)個氣(qi)(qi)孔(kong)形(xing)(xing)(xing)狀(zhuang)不規則(ze),如圖2-58所示。此類氣(qi)(qi)孔(kong)不僅與鋼液(ye)中(zhong)(zhong)(zhong)(zhong)氣(qi)(qi)泡的(de)(de)(de)(de)(de)形(xing)(xing)(xing)成有關,還(huan)受凝(ning)固收縮(suo)等因素的(de)(de)(de)(de)(de)影(ying)響,且多(duo)(duo)數(shu)分(fen)布于(yu)鑄(zhu)錠心(xin)部,尤(you)其在(zai)中(zhong)(zhong)(zhong)(zhong)心(xin)等軸(zhou)晶(jing)區(qu)。這主要由于(yu)中(zhong)(zhong)(zhong)(zhong)心(xin)等軸(zhou)晶(jing)區(qu)內(nei)枝晶(jing)生(sheng)長(chang)較發達,容易(yi)形(xing)(xing)(xing)成復(fu)雜的(de)(de)(de)(de)(de)網狀(zhuang)結(jie)構,從而將液(ye)相(xiang)(xiang)(xiang)分(fen)割成無數(shu)個獨(du)立的(de)(de)(de)(de)(de)液(ye)相(xiang)(xiang)(xiang)區(qu)域,當發生(sheng)凝(ning)固收縮(suo)時,難以進行補縮(suo),在(zai)形(xing)(xing)(xing)成疏松(song)縮(suo)孔(kong)的(de)(de)(de)(de)(de)同時,局(ju)部鋼液(ye)靜壓力降低,促使(shi)氮(dan)(dan)(dan)從殘(can)余(yu)(yu)(yu)液(ye)相(xiang)(xiang)(xiang)中(zhong)(zhong)(zhong)(zhong)析出,從而形(xing)(xing)(xing)成了氮(dan)(dan)(dan)氣(qi)(qi)孔(kong)和疏松(song)縮(suo)孔(kong)共存的(de)(de)(de)(de)(de)宏觀缺陷(xian)。
平衡(heng)凝(ning)固(gu)時,19Cr14Mn0.9N含氮(dan)(dan)(dan)(dan)奧氏(shi)(shi)體(ti)不(bu)銹鋼殘余(yu)液(ye)相(xiang)中氮(dan)(dan)(dan)(dan)偏析與(yu)體(ti)系氮(dan)(dan)(dan)(dan)溶(rong)解(jie)度(du)(du)的(de)(de)差(cha)值如圖2-59所示。凝(ning)固(gu)初期(qi)鐵(tie)素體(ti)阱(ferrite trap)的(de)(de)形(xing)成(cheng),導(dao)致氮(dan)(dan)(dan)(dan)溶(rong)解(jie)度(du)(du)的(de)(de)降低,進(jin)而使氮(dan)(dan)(dan)(dan)偏析與(yu)體(ti)系氮(dan)(dan)(dan)(dan)溶(rong)解(jie)度(du)(du)差(cha)值呈現(xian)出略微增大的(de)(de)趨(qu)勢(shi)。但在后續凝(ning)固(gu)過程(cheng)中,隨著鐵(tie)素體(ti)阱的(de)(de)消失以(yi)及(ji)富氮(dan)(dan)(dan)(dan)奧氏(shi)(shi)體(ti)相(xiang)的(de)(de)不(bu)斷形(xing)成(cheng),差(cha)值減(jian)小;在整個凝(ning)固(gu)過程(cheng)中差(cha)值始終(zhong)較(jiao)小,且變化幅度(du)(du)較(jiao)窄。對于19Cr14Mn0.9N 含氮(dan)(dan)(dan)(dan)奧氏(shi)(shi)體(ti)不(bu)銹鋼,液(ye)相(xiang)中氮(dan)(dan)(dan)(dan)氣泡的(de)(de)形(xing)成(cheng)趨(qu)勢(shi)較(jiao)小,難以(yi)在鑄(zhu)錠內(nei)形(xing)成(cheng)獨立內(nei)壁光滑的(de)(de)規(gui)則氮(dan)(dan)(dan)(dan)氣孔(kong)。
此外(wai),目(mu)前有人對(dui)(dui)奧(ao)氏體(ti)鋼(gang)(gang)凝固過(guo)(guo)程中(zhong)(zhong)(zhong)氮(dan)(dan)氣(qi)(qi)孔的(de)(de)(de)(de)形(xing)(xing)成(cheng)進(jin)行(xing)(xing)了大(da)量(liang)研(yan)究,如Yang和Leel901研(yan)究了奧(ao)氏體(ti)鋼(gang)(gang)16Cr3NixMn(x=9和11)凝固過(guo)(guo)程中(zhong)(zhong)(zhong)壓力和初(chu)始氮(dan)(dan)質量(liang)分數等(deng)(deng)因(yin)(yin)(yin)素對(dui)(dui)氮(dan)(dan)氣(qi)(qi)孔形(xing)(xing)成(cheng)的(de)(de)(de)(de)影響(xiang)(xiang)規(gui)律,并建立了相應的(de)(de)(de)(de)預測(ce)模型。Ridolfi和Tassal[84]分析(xi)了氮(dan)(dan)偏(pian)析(xi)、合金元素、冷卻速(su)率以及(ji)枝晶間距(ju)對(dui)(dui)奧(ao)氏體(ti)鋼(gang)(gang)中(zhong)(zhong)(zhong)氮(dan)(dan)氣(qi)(qi)孔的(de)(de)(de)(de)影響(xiang)(xiang)規(gui)律,并揭示了奧(ao)氏體(ti)鋼(gang)(gang)中(zhong)(zhong)(zhong)氮(dan)(dan)氣(qi)(qi)孔形(xing)(xing)成(cheng)機理。然而,目(mu)前對(dui)(dui)于(yu)(yu)雙相鋼(gang)(gang)中(zhong)(zhong)(zhong)氮(dan)(dan)氣(qi)(qi)孔形(xing)(xing)成(cheng)的(de)(de)(de)(de)研(yan)究較少(shao),且主要集中(zhong)(zhong)(zhong)在合金元素、鑄造方式、冷卻速(su)率等(deng)(deng)因(yin)(yin)(yin)素對(dui)(dui)氮(dan)(dan)氣(qi)(qi)孔影響(xiang)(xiang)規(gui)律的(de)(de)(de)(de)研(yan)究,鮮有對(dui)(dui)雙相鋼(gang)(gang)中(zhong)(zhong)(zhong)氮(dan)(dan)氣(qi)(qi)孔形(xing)(xing)成(cheng)機理的(de)(de)(de)(de)報(bao)道。以21.5Cr5Mn1.5Ni0.25N含(han)氮(dan)(dan)雙相鋼(gang)(gang)為例,氮(dan)(dan)偏(pian)析(xi)與溶(rong)解(jie)度(du)的(de)(de)(de)(de)差值在整個凝固過(guo)(guo)程中(zhong)(zhong)(zhong)的(de)(de)(de)(de)變化(hua)趨勢(shi),如圖(tu)2-59所示。隨著(zhu)凝固的(de)(de)(de)(de)進(jin)行(xing)(xing),氮(dan)(dan)偏(pian)析(xi)始終(zhong)大(da)于(yu)(yu)氮(dan)(dan)溶(rong)解(jie)度(du),且差值呈現出(chu)快速(su)增(zeng)大(da)的(de)(de)(de)(de)趨勢(shi)。因(yin)(yin)(yin)此,在21.5Cr5Mn1.5Ni0.25N 含(han)氮(dan)(dan)雙相鋼(gang)(gang)凝固過(guo)(guo)程中(zhong)(zhong)(zhong),氮(dan)(dan)偏(pian)析(xi)嚴重(zhong),殘余液相內氮(dan)(dan)氣(qi)(qi)泡形(xing)(xing)成(cheng)趨勢(shi)較大(da),明顯高于(yu)(yu)19Cr14Mn0.9N含(han)氮(dan)(dan)奧(ao)氏體(ti)不銹鋼(gang)(gang)。
氮氣(qi)泡(pao)(pao)形成和(he)(he)長大具有(you)重要的作用(圖2-60).其中(zhong)(zhong),σ為(wei)氣(qi)液(ye)界面(mian)的表面(mian)張力,r為(wei)氣(qi)泡(pao)(pao)半徑(jing)。結合經典形核(he)理論,氮氣(qi)泡(pao)(pao)在(zai)鋼液(ye)中(zhong)(zhong)穩定存在(zai)的必要條件為(wei)氣(qi)泡(pao)(pao)內(nei)壓力大于作用于氣(qi)泡(pao)(pao)的所有(you)壓力之和(he)(he),即
式中(zhong),Aso由凝固(gu)過程(cheng)中(zhong)除氮(dan)(dan)以外其(qi)他合金元(yuan)素(su)的(de)微(wei)觀偏(pian)(pian)析(xi)進(jin)行計(ji)(ji)算(suan),其(qi)值隨(sui)著(zhu)枝(zhi)(zhi)晶間殘(can)余液(ye)(ye)相(xiang)中(zhong)氮(dan)(dan)溶(rong)(rong)解(jie)度的(de)增加(jia)而(er)減小,表征了枝(zhi)(zhi)晶間殘(can)余液(ye)(ye)相(xiang)中(zhong)氮(dan)(dan)溶(rong)(rong)解(jie)度對(dui)(dui)氮(dan)(dan)氣泡(pao)形(xing)成(cheng)的(de)影響程(cheng)度;Ase表征了枝(zhi)(zhi)晶間氮(dan)(dan)偏(pian)(pian)析(xi)對(dui)(dui)氮(dan)(dan)氣泡(pao)形(xing)成(cheng)的(de)影響程(cheng)度,可(ke)由凝固(gu)過程(cheng)中(zhong)枝(zhi)(zhi)晶間殘(can)余液(ye)(ye)相(xiang)中(zhong)氮(dan)(dan)偏(pian)(pian)析(xi)計(ji)(ji)算(suan)獲得,其(qi)值隨(sui)著(zhu)氮(dan)(dan)偏(pian)(pian)析(xi)的(de)增大而(er)增大。此外,用(yong)于計(ji)(ji)算(suan)Aso和Ase時(shi)所(suo)需(xu)的(de)合金元(yuan)素(su)偏(pian)(pian)析(xi)均由鋼凝固(gu)相(xiang)變(bian)所(suo)致。
氮氣泡(pao)(pao)(pao)的(de)形核和(he)長(chang)大(da)過(guo)程(cheng)(cheng)復雜(za),且影響因素眾多,包(bao)括凝(ning)(ning)固(gu)(gu)收縮、冶(ye)煉環境(jing)以及(ji)坩(gan)堝材質(zhi)等。因此,很難采用(yong)Pg值精確預測凝(ning)(ning)固(gu)(gu)過(guo)程(cheng)(cheng)中(zhong)氮氣泡(pao)(pao)(pao)的(de)形成和(he)長(chang)大(da)。然而基于(yu)Yang等的(de)實驗(yan)研究[70,77],在評估凝(ning)(ning)固(gu)(gu)壓力、合金(jin)成分等因素對氮氣泡(pao)(pao)(pao)形成的(de)影響程(cheng)(cheng)度時(shi),Pg起關鍵作用(yong)。實際凝(ning)(ning)固(gu)(gu)過(guo)程(cheng)(cheng)介于(yu)平衡(heng)凝(ning)(ning)固(gu)(gu)(固(gu)(gu)/液相(xiang)中(zhong)溶質(zhi)完(wan)全(quan)擴散)和(he)Scheil凝(ning)(ning)固(gu)(gu)(固(gu)(gu)相(xiang)無溶質(zhi)擴散,液相(xiang)中(zhong)完(wan)全(quan)擴散)之間70].因此,可分別計算(suan)平衡(heng)凝(ning)(ning)固(gu)(gu)和(he)Scheil凝(ning)(ning)固(gu)(gu)過(guo)程(cheng)(cheng)中(zhong)的(de)Aso、Ase和(he)Pg,闡明實際凝(ning)(ning)固(gu)(gu)過(guo)程(cheng)(cheng)中(zhong)壓力等因素對氮氣泡(pao)(pao)(pao)形成的(de)影響規律(lv)。
現以(yi)21.5Cr5Mn1.5Ni0.25N含氮雙相鋼D1鑄錠為例(li),對凝固過程中Aso、Ase和P8的(de)變化趨勢進行計(ji)算。圖2-61描述了ΔAso(=Asa-Aso,0)和AAse(=Ase-Ase,o)隨固相質(zhi)量分(fen)數的(de)變化趨勢(Aso,0和Asc,0分(fen)別為D1鑄錠凝固時Aso和Ase的(de)初始(shi)值)。
在平衡(heng)凝固(gu)(gu)(gu)和(he)Scheil凝固(gu)(gu)(gu)過(guo)(guo)程(cheng)中(zhong),ΔAso的(de)(de)(de)最小值(zhi)(zhi)分(fen)別為(wei)(wei)-0.145和(he)-0.397,與(yu)此相對(dui)應的(de)(de)(de)ΔAse值(zhi)(zhi)最大(da)(da),分(fen)別為(wei)(wei)0.68和(he)0.92.在整個(ge)(ge)凝固(gu)(gu)(gu)過(guo)(guo)程(cheng)中(zhong),由于(yu)ΔAse與(yu)ΔAso之和(he)始(shi)終大(da)(da)于(yu)零,因而枝(zhi)晶間殘余液相中(zhong)氮(dan)(dan)偏(pian)析對(dui)D1 鑄(zhu)錠凝固(gu)(gu)(gu)過(guo)(guo)程(cheng)中(zhong)氮(dan)(dan)氣泡形(xing)成(cheng)的(de)(de)(de)影響大(da)(da)于(yu)氮(dan)(dan)溶解度(du),起主導(dao)作(zuo)用。此外,在整個(ge)(ge)凝固(gu)(gu)(gu)過(guo)(guo)程(cheng)中(zhong),P8變化(hua)趨勢如圖2-62所(suo)示(shi),其(qi)變化(hua)規律(lv)與(yu)Young等。的(de)(de)(de)研究(jiu)結果一致,Pg的(de)(de)(de)最大(da)(da)值(zhi)(zhi)Pg與(yu)Ase+Aso的(de)(de)(de)最大(da)(da)值(zhi)(zhi)相對(dui)應,且在平衡(heng)凝固(gu)(gu)(gu)和(he) Scheil 凝固(gu)(gu)(gu)過(guo)(guo)程(cheng)中(zhong)分(fen)別為(wei)(wei)0.63MPa和(he)0.62MPa.此外,可通過(guo)(guo)對(dui)比不同鑄(zhu)錠中(zhong)的(de)(de)(de)探討凝固(gu)(gu)(gu)壓力、初始(shi)氮(dan)(dan)質量分(fen)數以及合(he)金元(yuan)素(鉻(ge)和(he)錳)等對(dui)液相中(zhong)氮(dan)(dan)氣泡形(xing)成(cheng)的(de)(de)(de)影響,進而明晰各因素對(dui)氮(dan)(dan)氣孔形(xing)成(cheng)的(de)(de)(de)影響規律(lv)。